ECE 5734/ ME 5584/ AOE 5734: Convex Optimization Course Syllabus

Instructor:	Mazen Farhood 224-13 Randolph Hall E-mail: <u>farhood@vt.edu</u> Phone: 231-2983
Meeting Time:	Tuesdays and Thursdays, 12:30 to 1:45 PM
Meeting Place:	208 Randolph Hall
Office Hours:	Tuesdays and Thursdays, 1:50 to 3:20 PM
Grader:	TBA

Description: Recognizing and solving convex optimization problems. Convex sets, functions, and optimization problems. Least-squares, linear, and quadratic optimization. Geometric and semidefinite programming. Vector optimization. Duality theory. Convex relaxations. Approximation, fitting, and statistical estimation. Geometric problems. Control and trajectory planning.

Primary Tex	t:	Stephen Boyd and Lieven Vandenberghe, <i>Convex Optimization</i> , Cambridge University Press.	
References:		A. Ben-Tal, A. Nemirovski, Lectures on Modern Convex Optimization: Analysis, Algorithms, and Engineering Applications, SIAM.	
		D. P. Bertsekas, A. Nedic, A. E. Ozdaglar, <i>Convex Analysis and Optimization</i> , Athena Scientific.	
		D. P. Bertsekas, Nonlinear Programming, Athena Scientific.	
		Y. Nesterov, Introductory Lectures on Convex Optimization: A Basic Course, Springer.	
		J. Borwein and A. S. Lewis, <i>Convex Analysis and Nonlinear Optimization:</i> <i>Theory and Examples,</i> Springer.	
Grade:	20% 40% 40%	Homework Midterm (24-hour take-home exam) Final (24-hour take-home exam)	

Course Topics:

		Percent of Course
1.	Convex Sets and Functions.	20%
	Basic properties and examples; operations that preserve convexity;	
	convexity with respect to generalized inequalities; quasiconvex and	
	log-concave functions.	
2.	Convex Optimization Problems.	20%
	Linear, quadratic, and geometric programs; generalized inequalities;	
	semidefinite programming; vector optimization and Pareto optimal points.	
3.	Optimality Conditions and Duality theory.	15%
	Lagrange dual problem; weak and strong duality; geometric interpretation	•
	Karush-Kuhn-Tucker conditions; perturbation and sensitivity analysis.	
4.	Approximation and Fitting.	15%
	Norm approximation; least-norm problems; regularized approximation;	
	robust approximation.	
5.	Statistical Estimation.	15%
	Maximum likelihood estimation; optimal detector design; experiment desi	gn.
6.	Geometric problems.	15%
	Extremal volume ellipsoids; centering; classification; facility location.	
		100%