
Systems & Control Letters 47 (2002) 417– 432
www.elsevier.com/locate/sysconle

LMI tools for eventually periodic systems
Mazen Farhood, Geir E. Dullerud∗

Department of Mechanical and Industrial Engineering, University of Illinois, 1206 West Green Street, MC-244,
Urbana, IL 61801, USA

Received 20 October 2001; received in revised form 10 June 2002; accepted 5 July 2002

Abstract

This paper is focused on the concept of an eventually periodic linear discrete-time system. We derive a necessary and
su4cient analysis condition for checking open-loop stability and performance of such systems, and use this to derive
exact controller synthesis conditions given eventually periodic plants. All the conditions derived are provided in terms
of semi-de9nite programming problems. The motivation for this work is controlling nonlinear systems along prespeci9ed
trajectories, notably those which eventually settle down into periodic orbits and those with uncertain initial states.
c© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

In this paper, we introduce and study eventually periodic systems. Such systems are aperiodic for an initial
amount of time, and then become periodic afterwards. Our work is motivated by the desire to use robust
control methods for control of nonlinear systems along prespeci9ed trajectories. There are two basic ways in
which eventually periodic dynamics arise when linearizing systems along trajectories: (1) the system trajectory
is an aperiodic maneuver joined to a subsequent periodic orbit; or (2) the initial condition of the system is
uncertain. We remark that both 9nite horizon and periodic systems are subclasses of eventually periodic
systems.

The main technical contribution of this paper is a necessary and su4cient condition for the exponential
stability and contractiveness (in the ‘2-induced norm) of open-loop eventually periodic systems. This condition,
furthermore, is given in terms of a linear matrix inequality (LMI) feasibility problem. In other words, this
paper primarily provides a version of the Kalman–Yakubovich–Popov (KYP) Lemma for eventually periodic
systems. Based on the aforementioned open-loop result, we derive necessary and su4cient conditions for
the existence of eventually periodic controllers which both stabilize and provide performance in closed-loop
control systems. It is not di4cult to show (via example) that, given an eventually periodic system of a
speci9ed class to be controlled, the closed-loop performance may only be achievable by a controller outside
that class; plainly, the controller may need to exhibit longer transient time variation than the plant.
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The contributions of this paper are:

• a new LMI characterization of stability and performance for discrete-time eventually periodic systems;
• precise conditions for closed-loop synthesis of eventually periodic controllers.

We note that the aforementioned LMI results are derived for the general setting of non-stationary dimensions
of the state space systems used.

The general machinery used to obtain the results of this paper is motivated by the work in [7,11,13],
combined with the time-varying system machinery developed in [5]. Also, see the closely related earlier work
in [1,9,10] on nonstationary systems. The main analysis result derived in the paper is based on [6], and is
proved using a self-contained matrix inequality approach. The most closely related works to the current paper
are [2,16] which give very useful results on the solutions of Riccati equations. The literature in the area of
time-varying systems is vast, and we refer the reader to [8] for a comprehensive list of general references.

The paper is organized as follows. After a notational section, we review some previous results on linear
time-varying (LTV) systems. We then move on to a section, partitioned into three subsections, in which we
derive the main analysis result of the paper. Synthesis of eventually periodic controllers for eventually periodic
plants is then presented. Finally, we provide some concluding remarks.

2. Preliminaries

We now introduce our notation and gather some elementary facts. The set of real numbers and that of
real n × m matrices are denoted by R and Rn×m, respectively. If Si is a sequence of operators, then diag(Si)
denotes their block-diagonal augmentation.

Given two Hilbert spaces E and F , we denote the space of bounded linear operators mapping E to F by
L(E; F), and shorten this to L(E) when E equals F . If X is in L(E; F), we denote the E to F induced
norm of X by ‖X ‖E→F ; when the spaces involved are obvious, we write simply ‖X ‖. The adjoint of X is
written X ∗. When an operator X ∈L(E) is self-adjoint, we use X ¡ 0 to mean it is negative de9nite; that is
there exists a number � ¿ 0 such that, for all nonzero x∈E, the inequality 〈x; Xx〉¡− �‖x‖2 holds. We now
state an elementary fact used in the sequel.

Proposition 1. Suppose X and Y are self-adjoint operators on two Hilbert spaces, and W is an operator
between these spaces. Then(

X W

W ∗ Y

)
¡ 0

if and only if Y ¡ 0 and X − WY−1W ∗ ¡ 0.

This is the well-known Schur complement formula and will be referred to as such; it can be found in any
introductory text on matrix or operator theory.

We will be primarily concerned with two Hilbert spaces in this paper. The 9rst is the standard space Rn with
the inner product given by 〈x; y〉Rn =

∑n−1
t=0 xtyt = x∗y. The second Hilbert space of interest is formed given

an in9nite sequence {Rnt} of Hilbert spaces, and is denoted by ‘2({Rnt}). It is de9ned as the subspace of the
Hilbert space direct sum

⊕∞
t=0 Rnt consisting of elements (x0; x1; x2; : : :) which satisfy

∑∞
t=0 ‖xt‖2

Rnt ¡∞. The
inner product of x and y in ‘2({Rnt}) is de9ned by the in9nite sum 〈x; y〉‘2 =

∑∞
t=0〈xt ; yt〉Rnt . In the sequel,

we will frequently suppress the subscript on the dimension symbol nt and accordingly use a shorter notation
for ‘2({Rnt}), namely ‘2(Rn). Also, when the spatial dimensions nt are either evident or not relevant to the
discussion, we abbreviate further to ‘2. We will use ‖x‖ to denote

√〈x; x〉, the standard norm on this space.
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One of the most important operators used in the paper is the unilateral shift operator Z de9ned as follows:

Z : ‘2({Rmk}) → ‘2({Rnk}); where mk = nk+1

(a0; a1; a2; : : :)
Z�→ (0; a0; a1; a2; : : :):

Following the notation and approach in [5], we make the following de9nition.

De�nition 2. A bounded operator Q mapping ‘2({Rmk}) to ‘2({Rnk}) is block-diagonal if there exists a
sequence of matrices Qk in Rnk×mk such that, for all w; z, if z = Qw, then zk = Qkwk . Then Q has the
representation diag(Q0; Q1; Q2; : : :).

Suppose F , G, R and S are block-diagonal operators, and let A be a partitioned operator, each of whose
elements is a block-diagonal operator, such as

A =

[
F G

R S

]
:

We now de9ne the following notation:

< F G

R S
= := diag

([
F0 G0

R0 S0

]
;

[
F1 G1

R1 S1

]
; : : :

)
;

which we call the diagonal realization of A. Clearly for any given operator A of this particular structure, <A=
is simply A with the rows and columns permuted appropriately so that

< F G

R S
=

t
=

[
Ft Gt

Rt St

]
:

Having established these de9nitions, we are ready to consider the main subject of this paper.

3. LTV systems and the KYP lemma

We now brieMy review LTV state space systems; see [5] for an in-depth treatment of the theory. Suppose
we are considering the time-varying diNerence equation

xt+1 = Atxt + Btut ; x0 = 0;

yt = Ctxt + Dtut ;

where At , Bt , Ct and Dt are bounded real matrix sequences, each of which having elements of possibly diNerent
dimensions. Then clearly these sequences de9ne block-diagonal operators A, B, C and D, and therefore the
above system may be written more compactly in operator form as

x = ZAx + ZBu;

y = Cx + Du; (1)

where Z is the shift, or delay, operator on ‘2. Thus, assuming the relevant inverse exists, we can write the
map from u to y as

u �→ y = C(I − ZA)−1ZB + D:

It is possible to show that I − ZA is invertible if and only if the system xt+1 = Atxt is exponentially stable.
Throughout the paper we will say an open- or closed-loop LTV state space system is stable when its A-operator
satis9es the above invertibility condition.
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A very important result in systems theory is the KYP lemma. While there are many versions of this result,
we are only concerned with the one that turns an ‘2 induced norm condition into a linear operator inequality.
This version of the KYP lemma is stated as follows.

Lemma 3. Suppose operators A, B, C, and D are block-diagonal. The following conditions are equivalent:

(i) ‖C(I − ZA)−1ZB + D‖¡ 1 and I − ZA is invertible;
(ii) There exists OX ∈L(‘2), which is self-adjoint and positive de;nite, such that[

ZA ZB

C D

]∗ [ OX 0

0 I

][
ZA ZB

C D

]
−
[

OX 0

0 I

]
¡ 0: (2)

The proof of this lemma follows directly from [15], employing some of the notational machinery of [5]. The
condition in (ii) is clearly a linear operator inequality and hence gives us a very convenient way to evaluate
the ‘2 induced norm of the input–output mapping u �→ y. Now this condition can be further strengthened
by imposing additional structure on the operator OX . In fact, [5] shows that a solution exists to inequality (2)
if and only if a block-diagonal solution belonging to X exists where the set X consists of positive de9nite
self-adjoint operators X of the form

X = diag(X0; X1; X2; : : :) ¿ 0; (3)

with the block structure being the same as that of the operator A. Also, [5] gives another result regarding the
KYP lemma in the case of periodic operators. However, before stating this result, we need to introduce some
de9nitions.

De�nition 4. An operator P on ‘2 is said to be q-periodic if it commutes with the q-shift, that is

ZqP = PZq:

Suppose that Q is a q-periodic block-diagonal operator, then we de9ne the matrix Q̂ to be the ;rst period
truncation of Q, namely Q̂ := diag(Q0; : : : ; Qq−1). Also, we de9ne the cyclic shift matrix Ẑ for q¿ 2 by

Ẑ =




0 · · · 0 I

I
. . . 0

. . .
...

I 0




; such that Ẑ∗Q̂Ẑ =




Q1 0

. . .

Qq−1

0 Q0


 :

For q = 1, we set Ẑ = I .
The following theorem states that, given q-periodic block-diagonal state space operators, a solution exists

to inequality (2) if and only if a q-periodic solution exists.

Theorem 5. Suppose block-diagonal operators A, B, C and D are q-periodic, and that (2) has a solution in
X. Then there exists a q-periodic operator X ∈X such that its ;rst period truncation X̂ satis;es[

ẐÂ ẐB̂

Ĉ D̂

]∗ [
X̂ 0

0 I

][
ẐÂ ẐB̂

Ĉ D̂

]
−
[

X̂ 0

0 I

]
¡ 0: (4)

The proof of this theorem is presented in [5].
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4. Analysis results

In this section, we will show that a similar result to Theorem 5 holds for eventually periodic systems. We
start by stating the following de9nition.

De�nition 6. An operator P on ‘2 is said to be (k; q)-eventually periodic if, for some non-negative integer k,
we have

Zq((Z∗)kPZk) = ((Z∗)kPZk)Zq:

In the case where q = 1, P is called k-eventually time-invariant. Also, when only the period length q is
relevant, we simply call P eventually q-periodic.

Namely, a (k; q)-eventually periodic operator is q-periodic after an initial transient behavior up to time k.
Throughout the sequel we set k¿ 0 and q¿ 1 to be some ;xed integers. It is worth noting that when k = 0,
the above operator P would simply be q-periodic.

Our goal is to show that, for a (k; q)-eventually periodic system, if inequality (2) is solvable, then it has as
well a (k; q)-eventually periodic solution. Proving this requires a number of steps, and we partition our eNort
into the subsequent three subsections.

4.1. Eventual periodicity

The 9rst objective is establishing the following lemma.

Lemma 7. Suppose block-diagonal operators A, B, C and D are (k; q)-eventually periodic, and that X ∈X
and satis;es (2). Then there exists an eventually q-periodic operator RX ∈X such that[

ZA ZB

C D

]∗ [ RX 0

0 I

][
ZA ZB

C D

]
−
[

RX 0

0 I

]
¡ 0: (5)

The lemma says that a solution exists to inequality (2) if and only if an eventually q-periodic solution
exists. We emphasize that the above lemma does not specify the length of the 9nite horizon of the solution.
However, later in this section, we are going to present a much more powerful result which will specify this
length exactly. It will turn out that this length is exactly the same as that of the 9nite horizon of the state
space operators A, B, C and D, namely k.

Proof. The linear operator inequality (2) can be equivalently written as an in9nite number of LMIs, each
of which corresponds to a distinct time t. In this proof, we will make use of the continuity and convexity
properties of these LMIs to show that we can construct from any solution of inequality (2) an eventually
q-periodic solution. The only LMIs useful to our proof will turn out to be those corresponding to instances
t¿ k − 1. This means that, of all the 9nite horizon LMIs, only the one corresponding to the last instance of
the 9nite horizon will be used in this proof. As a result, we will assume, without loss of generality, that the
9nite horizon length k is simply equal to 1. Then the state space operator A will have the representation

A = diag(A0; Aper); where Aper = diag(Âper ; Âper ; : : :); (6)

Âper being the 9rst period truncation of the q-periodic block-diagonal operator Aper. Similar representations
apply for the other state space operators.
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By assumption X ∈X satis9es (2). Therefore, there exists a real number # ¿ 0 such that

[
ZA ZB

C D

]∗ [
X 0

0 I

][
ZA ZB

C D

]
−
[

X 0

0 I

]
¡ − #I: (7)

The above inequality is equivalent to the following matrix and operator inequalities:

[
A0 B0

C0 D0

]∗ [
X1 0

0 I

][
A0 B0

C0 D0

]
−
[

X0 0

0 I

]
¡ − #I; (8)

[
Aper Bper

Cper Dper

]∗ [
Z∗ OXZ 0

0 I

][
Aper Bper

Cper Dper

]
−
[

OX 0

0 I

]
¡ − #I; (9)

where OX =diag(X1; X2; X3; : : :). Invoking Theorem 5, we deduce that there exists a q-periodic operator Xper ∈X
that solves inequality (9). In other words, if (9) holds then

[
ẐÂper ẐB̂per

Ĉper D̂per

]∗ [
X̂ per 0

0 I

][
ẐÂper ẐB̂per

Ĉper D̂per

]
−
[

X̂ per 0

0 I

]
¡ − #I (10)

holds, where X̂ per = diag(Xper;0; : : : ; Xper; q−1) is the 9rst period truncation of Xper.
Now consider matrix inequality (8), and choose $ ¿ 0 such that the following holds:

F∗
0


 X1 + $Xper;0

1 + $
0

0 I


F0 −

[
X0 0

0 I

]
¡ − #I; where F0 =

[
A0 B0

C0 D0

]
: (11)

Also note from (9) and (10) that, for all %¿ 0 and i = 1; q + 1; 2q + 1; : : :, we have

[
Âper B̂per

Ĉper D̂per

]∗  Ẑ∗
(

Yi + %X̂ per

1 + %

)
Ẑ 0

0 I



[

Âper B̂per

Ĉper D̂per

]
−


 Yi + %X̂ per

1 + %
0

0 I


¡ − #I;

where Yi =diag(Xi; : : : ; Xi+q−1). With the above inequality in mind, choose & ¿ 0 such that, for all %¿ 0 and
i = q; 2q; 3q; : : :, the following is true:

F∗
i




Xi+1 + (% + &)Xper;0

1 + % + &
0

0 I


Fi −




Xi + %Xper; q−1

1 + %
0

0 I


¡ − #I:
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Hence, inequality (7) implies that the following inequalities hold:

F∗
0




X1 + $0Xper;0

1 + $0
0

0 I


F0 −

[
X0 0

0 I

]
¡ − #I;

F∗
1




X2 + $0Xper;1

1 + $0
0

0 I


F1 −




X1 + $0Xper;0

1 + $0
0

0 I


¡ − #I;

F∗
2




X3 + $0Xper;2

1 + $0
0

0 I


F2 −




X3 + $0Xper;1

1 + $0
0

0 I


¡ − #I;

...

F∗
q


 Xq+1 + $1Xper;0

1 + $1
0

0 I


Fq −




Xq + $0Xper; q−1

1 + $0
0

0 I


¡ − #I;

...

...

F∗
Nq+1




XNq+2 + $NXper;1

1 + $N
0

0 I


FNq+1 −




XNq+1 + $NXper;0

1 + $N
0

0 I


¡ − #I;

...

F∗
(N+1)q




X(N+1)q+1 + $N+1Xper;0

1 + $N+1
0

0 I


F(N+1)q −




X(N+1)q + $NXper; q−1

1 + $N
0

0 I


¡ − #I;

...

with $i := $ + i&. Now for i¿ 1, de9ne

SX i :=
Xi + $cXper;d

1 + $c
;

where c := Moor((i− 1)=q) and d := (i− 1) mod q. Set SX 0 =X0. With this de9nition, the above inequality list
becomes

F∗
i

[
SX i+1 0

0 I

]
Fi −

[
SX i 0

0 I

]
¡ 0 for all i¿ 0:
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Clearly, SX (N+1)q+1 tends to Xper;0 as N tends to in9nity, and thus, for some su4ciently large N , we can
replace SX (N+1)q+1 in the above list by Xper;0 to get

F∗
(N+1)q

[
Xper;0 0

0 I

]
F(N+1)q −

[
SX (N+1)q 0

0 I

]
¡ 0:

Using the 9rst (N + 1)q inequalities in the above list, this inequality, and (10), it is routine to see that the
eventually q-periodic operator

RX := diag( SX 0; SX 1; : : : ; SX (N+1)q; Xper)

solves (7).

Having proved this intermediate result, we must now build on it to achieve the stronger result sought. In
order to do this, we must 9rst develop some new tools.

4.2. Technical machinery

We now introduce some de9nitions and results that are essential to proving the main result of this section.
To start, we denote the set of symmetric positive semi-de9nite matrices of dimension n by Pn, and de9ne the
sequence of sets Di for non-negative integers i by

Di = {X ∈Pn: B∗
i XBi + D∗

i Di − I ¡ 0}:
Also, for integers i¿ 0, we de9ne the sequence 1 of maps +i :Di → Pn by

+i(X ) = A∗
i XAi + C∗

i Ci − (A∗
i XBi + C∗

i Di)(B∗
i XBi + D∗

i Di − I)−1(B∗
i XAi + D∗

i Ci):

The following proposition is extensively used in the sequel.

Proposition 8. Suppose X ∈Pn, i¿ 0, and Y ∈Di. If X 6Y , then X ∈Di and +i(X )6+i(Y ).

Proof. Obviously, from the de9nition of the domain Di, if Y ∈Di, then the fact that X 6Y implies directly
that X ∈Di. Now for every $ ¿ 0, the following inequality is true:

+i(Y ) ¡ +i(Y ) + $I︸ ︷︷ ︸
W

:

Applying the Schur complement to this inequality, we get

F∗
i

[
Y 0

0 I

]
Fi −

[
W 0

0 I

]
¡ 0;

where

Fi :=

[
Ai Bi

Ci Di

]
:

1 Notice that the iteration +i(Xt) = Xt+1 is just the discrete-time matrix Riccati equation.



M. Farhood, G.E. Dullerud / Systems & Control Letters 47 (2002) 417– 432 425

Also, we have[
X 0

0 I

]
6

[
Y 0

0 I

]
;

which implies that

F∗
i

[
X 0

0 I

]
Fi −

[
W 0

0 I

]
6F∗

i

[
Y 0

0 I

]
Fi −

[
W 0

0 I

]
:

Hence, the left-hand side (LHS) of the above inequality is negative de9nite, and so applying the Schur
complement to the inequality LHS ¡ 0, we get

+i(X ) ¡ +i(Y ) + $I

for all $ ¿ 0. Thus, +i(X )6+i(Y ).

Another very useful proposition is the following.

Proposition 9. Suppose that X ∈X and satis;es (2). Then, for each i¿ 0, both Xi+1 ∈Di and +i(Xi+1) ¡ Xi

hold.

Proof. By assumption X ∈X and satis9es (2). Then the following holds:

F∗
i

[
Xi+1 0

0 I

]
Fi −

[
Xi 0

0 I

]
¡ 0

for all integers i¿ 0. Applying the Schur complement formula to the above LMI, we get

B∗
i Xi+1Bi + D∗

i Di − I ¡ 0;

+i(Xi+1) ¡ Xi:
(12)

Note that (12), along with the fact that Xi+1 ¿ 0, clearly implies that Xi+1 ∈Di.

Before proceeding, it is convenient to de9ne a domain and a corresponding map, which are closely related
to the Di and +i respectively. For q¿ 2, we de9ne the domain set D̂ by

D̂= {X ∈Dk+q−1: +i(+i+1(· · ·+k+q−1(X ) · · ·))∈Di−1 for all i = k + 1; : : : ; k + q − 1}:
For q = 1, we set D̂=Dk+q−1. Associated with this domain is the map +̂ : D̂→ Pn de9ned by

+̂(X ) = +k(+k+1(· · ·+k+q−1(X ) · · ·)):
Last, for some integer m¿ 1, we formally de9ne +̂m(X ) by

+̂m(X ) = +̂(+̂(+̂ · · ·︸ ︷︷ ︸
m times

(X ) · · ·)):

Pertaining to the map +̂, we have the following two very important facts that follow directly from Propo-
sition 8.

Corollary 10. Suppose X ∈Pn and Y ∈ D̂.

(i) If X 6Y , then X ∈ D̂ and +̂(X )6 +̂(Y );
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(ii) If +̂(Y )6Y , then, for all m¿ 1, the following is true:

+̂m+1(Y )6 +̂m(Y )6Y:

Part (i) of the claim follows routinely by an iterative application of Proposition 8; Part (ii) is easily shown
by applying Part (i). We accordingly omit the proof.

A very useful corollary of Propositions 8 and 9 follows; recall that k and q are 9xed in this section.

Corollary 11. Suppose that X ∈X and satis;es (2). Then, for all m¿1, Xk+mq∈D̂ and +̂(Xk+mq)¡Xk+(m−1)q.

The proof is immediate and so is not included.

4.3. Main results

Now we can state the main result of this section.

Theorem 12. Suppose block-diagonal operators A, B, C and D are (k; q)-eventually periodic. Then I − ZA
is non-singular and ‖C(I − ZA)−1ZB + D‖¡ 1 holds if and only if there exists a (k; q)-eventually periodic
operator Xeper ∈X such that[

ZA ZB

C D

]∗ [
Xeper 0

0 I

][
ZA ZB

C D

]
−
[

Xeper 0

0 I

]
¡ 0: (13)

Proof. The “if” direction follows immediately from Lemma 3.
To prove “only if”, we begin by recalling from the proof of Lemma 7 that, without loss of generality, we

may assume the length of the 9nite horizon k to be equal to 1. Then the state space operator A will have the
following representation:

A = diag(A0; Âper ; Âper ; : : :);

where Âper is de9ned as in (6). Similar representations apply for B, C, and D.
Now, by assumption, inequality (2) has a solution in X. Then, by invoking Lemma 7, there exists an

eventually q-periodic operator X satisfying the aforementioned inequality such that, for some non-negative
integer N ,

X = diag(X0; X1; : : : ; XNq; X̂ ; X̂ ; : : :);

where X̂ = diag(XNq+1; : : : ; X(N+1)q). Invoking Proposition 9 and Corollary 11, we deduce that (5) holds only
if the following sequence of inequalities holds:

+0(X1) ¡ X0;

+̂(Xq+1) ¡ X1;

...

+̂(XNq+1) ¡ X(N−1)q+1;

+̂(XNq+1) ¡ XNq+1:

(14)
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Starting with the second last inequality, we can successively apply Part (i) of Corollary 11 to obtain the
inequality

+̂N (XNq+1) ¡ X1:

Invoking Proposition 8, the preceding inequality, along with the inequality +0(X1) ¡ X0 from (14), guarantees
the validity of the following:

+0(+̂N (XNq+1)) ¡ X0:

Applying the Schur complement formula to the above inequality, we get

F∗
0

[
+̂N (XNq+1) 0

0 I

]
F0 −

[
X0 0

0 I

]
¡ 0;

where F0 is de9ned as in (11). Note that +̂N (XNq+1) is positive semi-de9nite. But, in order for +̂N (XNq+1) to
be part of the solution of inequality (2), it has to be positive de9nite, and so, we perturb it to achieve this.
Choose 0 ¡ $ ¡ 1 such that the following strict inequality holds:

F∗
0

[
(1 − $)+̂N (XNq+1) + $XNq+1 0

0 I

]
F0 −

[
X0 0

0 I

]
¡ 0: (15)

Note that (1 − $)+̂N (XNq+1) + $XNq+1 ¿ 0.
Now invoking part (ii) of Corollary 10, we have

+̂N+1(XNq+1)6 +̂N (XNq+1):

De9ning ,i(+̂N (XNq+1))=+i(+i+1(· · ·+q(+̂N (XNq+1)) · · ·)) for i=2; : : : ; q, we can equivalently write the above
inequality as

+1(,2(+̂N (XNq+1)))6 +̂N (XNq+1):

Applying the Schur complement to this inequality, we get

F∗
1

[
,2(+̂N (XNq+1)) 0

0 I

]
F1 −

[
+̂N (XNq+1) 0

0 I

]
6 0: (16)

Also, applying the Schur complement to the inequality ,i(+̂N (XNq+1))6,i(+̂N (XNq+1)) for i = 2; : : : ; q,
we get

F∗
j

[
,j+1(+̂N (XNq+1)) 0

0 I

]
Fj −

[
,j(+̂N (XNq+1)) 0

0 I

]
6 0 (17)

for j = 2; : : : ; q − 1, and

F∗
q

[
+̂N (XNq+1) 0

0 I

]
Fq −

[
,q(+̂N (XNq+1)) 0

0 I

]
6 0: (18)

Now we can write matrix inequalities (16)–(18) more compactly as[
Âper B̂per

Ĉper D̂per

]∗ [
Ẑ∗TẐ 0

0 I

][
Âper B̂per

Ĉper D̂per

]
−
[

T 0

0 I

]
6 0; (19)

where

T = diag(+̂N (XNq+1); ,2(+̂N (XNq+1)); : : : ; ,q(+̂N (XNq+1))):
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At this point, we note that since the eventually q-periodic operator X solves (2), the following inequality
holds: [

Âper B̂per

Ĉper D̂per

]∗ [
Ẑ∗X̂ Ẑ 0

0 I

][
Âper B̂per

Ĉper D̂per

]
−
[

X̂ 0

0 I

]
¡ 0: (20)

Taking the convex combination {$ × (20) + (1 − $) × (19)}, we get[
Âper B̂per

Ĉper D̂per

]∗ [
Ẑ∗X̂ perẐ 0

0 I

][
Âper B̂per

Ĉper D̂per

]
−
[

X̂ per 0

0 I

]
¡ 0; (21)

where X̂ per = (1− $)T + $X̂ ¿ 0. Now it is apparent from inequalities (15) and (21) that the (k; q)-eventually
periodic operator (k = 1 in this case) Xeper = diag(X0; X̂ per ; X̂ per ; : : :) solves inequality (13). Thus, we have
shown that, given (k; q)-eventually periodic block-diagonal state space operators, we can always construct
from any solution of inequality (2) a (k; q)-eventually periodic block-diagonal solution.

Before stating the next result, we require some additional notation. Suppose Q is a (k; q)-eventually periodic
block-diagonal operator, then we de9ne Q̃ to be the ;nite-horizon-;rst-period truncation of Q, namely

Q̃ := diag(Q0; : : : ; Qk−1; Qk ; : : : ; Qk+q−1);

which is a matrix. Also, we de9ne the shift matrices Z1 and Z2 for i; j = 1; : : : ; k + q by

Z1 = [aij]; where aij =

{
I if i = 2; : : : ; k + q; j = i − 1;

0 otherwise;

Z2 = [bij]; where bij =

{
I if i = k + 1; j = k + q;

0 otherwise:

And so for a block-diagonal matrix Q̃, we have

Z∗
1 Q̃Z1 = diag(Q1; : : : ; Qk+q−1; 0) and Z∗

2 Q̃Z2 = diag(0; : : : ; 0; Qk):

Last, de9ne the truncation of the set X, de9ned in (3), by

X̃ := {X̃ : X ∈X}:
Using these new de9nitions, we have the following corollary of Theorem 12 and Lemma 3.

Corollary 13. Suppose block-diagonal operators A, B, C and D are (k; q)-eventually periodic. The following
conditions are equivalent:

(i) ‖C(I − ZA)−1ZB + D‖¡ 1 and I − ZA is invertible;
(ii) There exists a matrix X̃ ∈ X̃ such that[

Ã B̃

C̃ D̃

]∗ [
Z∗

1 X̃ Z1 + Z∗
2 X̃ Z2 0

0 I

][
Ã B̃

C̃ D̃

]
−
[

Z∗
1 X̃ Z1 + Z∗

2 X̃ Z2 0

0 I

]
¡ 0: (22)

Thus, this corollary gives a 9nite dimensional convex condition for determining the ‘2 induced norm of an
eventually periodic system with block-diagonal state space operators A, B, C, and D. This condition can be
checked using various convex programming techniques; see for example [3] for a synopsis of such methods.
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5. Synthesis application: minimizing the ‘2-induced norm

Let G be a linear time-varying discrete-time system de9ned by the following state space equation:


xt+1

zt

yt


=




At B1t B2t

C1t D11t D12t

C2t D21t 0






xt

wt

ut


 ; x0 = 0; (23)

for w∈ ‘2. The signals xt , zt , wt , yt , and ut are real and have time-varying dimensions which we denote by
nt , nzt , nwt , nyt , and nut , respectively. For notational simplicity, in the following we are going to suppress
the time-dependence of the above dimensions. We make the assumption that all the state space matrices
are uniformly bounded functions of time, and further assume the direct feedthrough term D22 = 0. Also, we
assume that the block-diagonal operators, de9ned by the sequences of the above state space matrices, are
(k; q)-eventually periodic.

We suppose this system is being controlled by a controller K whose state space equation is[
xK
t+1

ut

]
=

[
AK

t BK
t

CK
t DK

t

][
xK
t

yt

]
; xK

0 = 0:

The controller state vector xK
t ∈Rr where the time dependence of r is suppressed. Again, we assume that the

block-diagonal operators, de9ned by the matrix sequences AK
t , BK

t , CK
t , and DK

t , are (k; q)-eventually periodic.
The connection of G and K is shown in Fig. 1. Since D22 = 0, this interconnection is always well-posed.

We write the realization of the closed loop system as

xL
t+1 = AL

t xt + BL
t wt;

zt = CL
t xt + DL

t wt; (24)

where xL
t contains the combined states of G and K , and AL

t , BL
t , CL

t and DL
t are appropriately de9ned. Here

AL
t ∈R(n+r)×(n+r), where n is the number of states of G and r is the number of states of K . Note that the

block-diagonal operators AL, BL, CL and DL are (k; q)-eventually periodic.
The following de9nition expresses our synthesis goal.

De�nition 14. A controller K is an admissible synthesis for G in Fig. 1 if I − ZAL is invertible and the
closed-loop performance inequality ‖w �→ z‖‘2→‘2 ¡ 1 is achieved.

The development of the solution of the above synthesis problem is very similar to the ones presented in
[7,13] for the time-invariant case, and the one given in [5] for the time-varying case. Hence, it would be

Fig. 1. Closed-loop system.
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very repetitive to include it here, and so, we are only going to present the main result. But before that, we
have to introduce one more de9nition. Given a block-diagonal operator X ∈X, we de9ne the block-diagonal
operators R and S via

X = < S N

N ∗ ?
=; X−1 = < R L

L∗ ?
=; (25)

where Rt; St ∈Rn×n and Lt; Nt ∈Rn×r .
The following theorem has conditions that only depend on the plant data and are independent of r, the

controller state dimension; more importantly these conditions are convex and 9nite dimensional.

Theorem 15. Suppose that plant G is (k; q)-eventually periodic. Then there exists an admissible (k; q)-
eventually periodic synthesis K for G with state dimension r¿ n if and only if there exist block-diagonal
matrices R̃ ¿ 0 and S̃ ¿ 0 satisfying

(i)

[
Ñ R 0

0 I

]∗ 
ÃR̃Ã∗ − Z∗

1 R̃Z1 − Z∗
2 R̃Z2 ÃR̃C̃∗

1 B̃1

C̃1R̃Ã∗ C̃1R̃C̃∗
1 − I D̃11

B̃∗
1 D̃∗

11 −I



[

Ñ R 0

0 I

]
¡ 0,

(ii)

[
Ñ S 0

0 I

]∗ 
Ã∗(Z∗

1 S̃Z1 + Z∗
2 S̃Z2)Ã − S̃ Ã∗(Z∗

1 S̃Z1 + Z∗
2 S̃Z2)B̃1 C̃∗

1

B̃∗
1 (Z

∗
1 S̃Z1 + Z∗

2 S̃Z2)Ã B̃∗
1 (Z

∗
1 S̃Z1 + Z∗

2 S̃Z2)B̃1 − I D̃∗
11

C̃1 D̃11 −I



[

Ñ S 0

0 I

]
¡ 0,

(iii)

[
R̃ I

I S̃

]
¿ 0,

where the operators Ñ R, Ñ S satisfy

Im Ñ R = Ker[B̃∗
2 D̃∗

12]; Ñ ∗
RÑ R = I;

Im Ñ S = Ker[C̃2 D̃21]; Ñ ∗
S Ñ S = I:

The theorem states that the validity of the above convex synthesis conditions is equivalent to the existence
of an admissible (k; q)-eventually periodic synthesis K for plant G. Solutions R̃ and S̃ can be used to construct
a (k; q)-eventually periodic controller K . The way to construct this controller can be found in [5,7,13].

Remark 16. If the synthesis conditions in Theorem 15 are invalid, we can only say that there exists no
admissible (k; q)-eventually periodic synthesis; but this does not necessarily imply the non-existence of a
diNerent admissible synthesis. In fact, it is not di4cult to construct counter examples of (k; q)-eventually
periodic plants that admit no (k; q)-but rather (N; q)-eventually periodic syntheses, where N ¿ k.

Remark 17. A (k; q)-eventually periodic plant G is also (N; q)-eventually periodic for all integers N ¿ k.
Thus, if no admissible (k; q)-eventually periodic synthesis for G exists, we may still utilize the synthesis
conditions of Theorem 15 as part of an algorithm to 9nd an admissible (M; q)-eventually periodic controller,
where M is the minimum integer greater or equal to k such that the aforementioned synthesis conditions hold
for (M; q)-eventually periodic plant G.
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In the following subsection, we show how these synthesis results can be used in situations where there are
nonzero initial conditions.

5.1. Control of systems with uncertain initial conditions

In this subsection, we illustrate how the results of the paper can be applied to linear systems with uncertain
initial conditions. The approach can be applied to general eventually periodic systems; however, to keep things
simple, in this subsection we will focus on the case where the nominal system is linear time-invariant. We
note that related results to this special case can be found in [4,12].

Given an LTI system with nonzero initial condition Ox0, we seek a stabilizing LTI controller that renders
the closed-loop map ( Ox0; w) �→ Oz contractive, where the input channel Ow and the output channel Oz represent
the exogenous disturbances and exogenous errors, respectively; hence, we require a stabilizing LTI controller
such that

sup
‖ Ox0‖Rn +‖ Ow‖‘2 �=0

‖ Oz‖‘2√
|| Ox0||2Rn + || Ow||2‘2

¡ 1: (26)

For that purpose, we make use of the fact that, given any LTI plant L having a nonzero initial condition,
we can always construct from it an isomorphic k-eventually time-invariant system G with the 9nite horizon
length k = 1, and vice versa. Now Theorem 15 already gives us 9nite dimensional convex conditions that are
necessary and su4cient for the existence of an admissible k-eventually time-invariant controller for system
G. Then, because of the isomorphism between systems L and G, the validity of the above conditions is also
equivalent to the existence of an LTI synthesis for system L.

Now let system G be de9ned as in (23), and assume that the block-diagonal operators constructed from the
state space matrix sequences are k-eventually time-invariant with the 9nite horizon length k =1. Furthermore,
assume that the input signal wt has dimension n+nw at time t=0 as opposed to just nw, its constant dimension
at all other times. Set w0 = [ OxT

0 ?]T, where w0 ∈Rn+nw and Ox0 ∈Rn. Also, suppose that all the state space
matrices at time t = 0 are zeroes except for B10 which is taken equal to [In 0n×nw ]. Now since we have
chosen our system state space matrices at t = 0 such that y0 = 0 and z0 = 0, the above system is isomorphic
to the following LTI system L:


Oxt+1

Ozt

Oy t


=




A1 B11 B21

C11 D111 D121

C21 D211 0






Oxt

Owt

Ou t


 ; (27)

where Oxt = xt+1, Ou t = ut+1, Oy t = yt+1, Owt = wt+1, and Ozt = zt+1 for all non-negative integers t. Hence, G is
isomorphic to LTI system L that has an uncertain initial state Ox0 = x1, and the isomorphism is clear from
(27). Conversely, starting with an LTI plant having a non-zero initial condition such as L, we can construct
a k-eventually time-invariant system G with k = 1 following the above steps reversely. Then we apply The-
orem 15, and if the synthesis conditions are valid, we can build a k-eventually time-invariant controller K ,
whose time-invariant portion (with a zero initial condition) constitutes an admissible LTI synthesis for LTI
system L.

We note here that the norm used on the initial uncertain state Ox0 and the input Ow, as de9ned in (26),
couples the two objects. In many situations, a more natural scenario is to have the norm constraints placed
on Ox0 and Ow independent; for instance, we would like to pose a problem where Ox0 is known to reside in a
norm ball of radius say $, and Ow is constrained to satisfy an independent condition of the form ‖ Ow‖‘2 6 �.
It is possible to combine the result in Theorem 15 with the results in [14] to get systematically obtained
controllers for this purpose.
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6. Conclusions

In this paper, we have introduced the notion of a (k; q)-eventually periodic linear system. We have derived
a version of the KYP lemma which characterizes open-loop stability and performance of such systems. For
closed-loop systems, we have provided necessary and su4cient LMI conditions for the existence and con-
struction of (k; q)-eventually periodic controllers given (k; q)-eventually periodic plants. We have also asserted
that, in this scenario, the optimal controller may not in general be (k; q)-eventually periodic; however, the
optimal performance can be approached arbitrarily by increasing the 9nite horizon variable k. Finally, we have
explicitly illustrated how this synthesis result can also be used to 9nd controllers in the presence of uncertain
initial states.
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